圓的方程
1、圓的定義:平面內(nèi)到一定點的距離等于定長的點的集合叫圓,定點為圓心,定長為圓的半徑。
2、圓的方程
(1)標準方程,圓心,半徑為r;
(2)一般方程
當時,方程表示圓,此時圓心為,半徑為
當時,表示一個點;當時,方程不表示任何圖形。
(3)求圓方程的方法:
一般都采用待定系數(shù)法:先設(shè)后求。確定一個圓需要三個獨立條件,若利用圓的標準方程,
需求出a,b,r;若利用一般方程,需要求出D,E,F(xiàn);
另外要注意多利用圓的幾何性質(zhì):如弦的中垂線必經(jīng)過原點,以此來確定圓心的位置。
3、直線與圓的位置關(guān)系:
直線與圓的位置關(guān)系有相離,相切,相交三種情況:
(1)設(shè)直線,圓,圓心到l的距離為,則有;;
(2)過圓外一點的切線:①k不存在,驗證是否成立②k存在,設(shè)點斜式方程,用圓心到該直線距離=半徑,求解k,得到方程
(3)過圓上一點的切線方程:圓(x-a)2+(y-b)2=r2,圓上一點為(x0,y0),則過此點的切線方程為(x0-a)(x-a)+(y0-b)(y-b)=r2
4、圓與圓的位置關(guān)系:通過兩圓半徑的和(差),與圓心距(d)之間的大小比較來確定。
設(shè)圓,
兩圓的位置關(guān)系常通過兩圓半徑的和(差),與圓心距(d)之間的大小比較來確定。
當時兩圓外離,此時有公切線四條;
當時兩圓外切,連心線過切點,有外公切線兩條,內(nèi)公切線一條;
當時兩圓相交,連心線垂直平分公共弦,有兩條外公切線;
當時,兩圓內(nèi)切,連心線經(jīng)過切點,只有一條公切線;
當時,兩圓內(nèi)含;當時,為同心圓。
注意:已知圓上兩點,圓心必在中垂線上;已知兩圓相切,兩圓心與切點共線
圓的輔助線一般為連圓心與切線或者連圓心與弦中點
數(shù)列定義:
如果一個數(shù)列從第二項起,每一項與它的前一項的差等于同一個常數(shù),這個數(shù)列就叫做等差數(shù)列,這個常數(shù)叫做等差數(shù)列的公差,公差常用字母d表示。
等差數(shù)列的通項公式為:an=a1+(n-1)d(1)
前n項和公式為:Sn=na1+n(n-1)d/2或Sn=n(a1+an)/2(2)
以上n均屬于正整數(shù)。
解釋說明:
從(1)式可以看出,an是n的一次函數(shù)(d≠0)或常數(shù)函數(shù)(d=0),(n,an)排在一條直線上,由(2)式知,Sn是n的二次函數(shù)(d≠0)或一次函數(shù)(d=0,a1≠0),且常數(shù)項為0。
在等差數(shù)列中,等差中項:一般設(shè)為Ar,Am+An=2Ar,所以Ar為Am,An的等差中項,且為數(shù)列的平均數(shù)。
且任意兩項am,an的關(guān)系為:an=am+(n-m)d
它可以看作等差數(shù)列廣義的通項公式。
推論公式:
從等差數(shù)列的定義、通項公式,前n項和公式還可推出:a1+an=a2+an-1=a3+an-2=…=ak+an-k+1,k∈{1,2,…,n}
若m,n,p,q∈N_,且m+n=p+q,則有am+an=ap+aq,Sm-1=(2n-1)an,S2n+1=(2n+1)an+1,Sk,S2k-Sk,S3k-S2k,…,Snk-S(n-1)k…或等差數(shù)列,等等。
基本公式:
和=(首項+末項)×項數(shù)÷2
項數(shù)=(末項-首項)÷公差+1
首項=2和÷項數(shù)-末項
末項=2和÷項數(shù)-首項
末項=首項+(項數(shù)-1)×公差
本學期我擔任高二(13)、(14)兩班的數(shù)學教學,完成了選修1-2、4-4、4-5內(nèi)容的教學。現(xiàn)將本學期的教學總結(jié)如下:
由于所帶的班級是文科班,學生基礎(chǔ)普遍較差,接受比較慢的實際情況,我采取了低起點,小步子的教學方法,根據(jù)教材的內(nèi)容設(shè)計課的類型,并對教學過程的程序及時安排,認真寫好每一篇教案。每一節(jié)課都做到有備而來,每堂課都在課前做好充分準備,課后及時對課上出現(xiàn)的情況進行總結(jié),并認真搜集每節(jié)課的知識要點,歸納在一起。在準備課堂練習時,需查閱大量的資料,給學生高質(zhì)量的習題,使每個題都有針對性。具體采取的教學措施是:
1、教學中要傳授知識與培育能力相結(jié)合,充分調(diào)動學生學習的主動性,培育學生的概括能力,是學生掌握數(shù)學基本方法、基本技能。
2、以五大數(shù)學思想為主線,有目的、有計劃、有重點,避免面面俱到,減輕學生的學習負擔。
3、加強教育教學研究,堅持學生主體性原則,堅持循序漸進原則,堅持啟發(fā)性原則。研究并采用以“五段發(fā)現(xiàn)式教學”模式為主的教學方法,全面提高教學質(zhì)量。
4、積極參加集體備課,共同研究,努力提高授課質(zhì)量
5、堅持向同行聽課,取人所長,補己之短。相互研究,共同進步。
6、堅持學法研討,加強個別輔導(dǎo)(差生與優(yōu)生),提高全體學生的整體數(shù)學水平,培育尖子學生。
社會對教師的素質(zhì)要求更高,在今后的教育教學工作中,我將更嚴格要求自己,多方面提高自己的素質(zhì),努力工作,爭取在多領(lǐng)域貢獻自己的力量,發(fā)揚優(yōu)點,改正缺點,開拓前進,不斷地奉獻自己的力量。一份耕耘,一份收獲。教學工作苦樂相伴。我將本著“勤學、善思、實干”的準則,一如既往,再接再厲,把工作搞得更好。